door knock alarm witth timer.pdf door knock alarm witth timer.pdf
Size : 1076.907 Kb
Type : pdf

intelligent electronic lock

March 18, 2012

This intelligent electronic lock circuit is built using transistors only. To open this electronic lock, one has to press tactile switches S1 through S4 sequentially. For deception you may annotate these switches with different numbers on the control panel/keypad. For example, if you want to use ten switches on the keypad marked ‘0’ through ‘9’, use any four arbitrary numbers out of these for switches S1 through S4, and the remaining six numbers may be annotated on the leftover six switches, which may be wired in parallel to disable switch S6 (shown in the figure). When four password digits in ‘0’ through ‘9’ are mixed with the remaining six digits connected across disable switch terminals, energisation of relay RL1 by unauthorised person is prevented.

 

For authorised persons, a 4-digit password number is easy to remember. To energise relay RL1, one has to press switches S1 through S4 sequentially within six seconds, making sure that each of the switch is kept depressed for a duration of 0.75 second to 1.25 seconds. The relay will not operate if ‘on’ time duration of each tactile switch (S1 through S4) is less than 0.75 second or more than 1.25 seconds. This would amount to rejection of the code. A special feature of this circuit is that pressing of any switch wired across disable switch (S6) will lead to disabling of the whole electronic lock circuit for about one minute.

Even if one enters the correct 4-digit password number within one minute after a ‘disable’ operation, relay RL1 won’t get energised. So if any unauthorised person keeps trying different permutations of numbers in quick successions for energisation of relay RL1, he is not likely to succeed. To that extent, this electronic lock circuit is fool-proof. This electronic lock circuit comprises disabling, sequential switching, and relay latch-up sections. The disabling section comprises zener diode ZD5 and transistors T1 and T2. Its function is to cut off positive supply to sequential switching and relay latch-up sections for one minute when disable switch S6 (or any other switch shunted across its terminal) is momentarily pressed.

During idle state, capacitor C1 is in discharged condition and the voltage across it is less than 4.7 volts. Thus zener diode ZD5 and transistor T1 are in non-conduction state. As a result, the collector voltage of transistor T1 is sufficiently high to forward bias transistor T2. Consequently, +12V is extended to sequential switching and relay latch-up sections. When disable switch is momentarily depressed, capacitor C1 charges up through resistor R1 and the voltage available across C1 becomes greater than 4.7 volts. Thus zener diode ZD5 and transistor T1 start conducting and the collector voltage of transistor T1 is pulled low. As a result, transistor T2 stops conducting and thus cuts off positive supply voltage to sequential switching and relay latch-up sections.

Thereafter, capacitor C1 starts discharging slowly through zener diode D1 and transistor T1. It takes approximately one minute to discharge to a sufficiently low level to cut-off transistor T1, and switch on transistor T2, for resuming supply to sequential switching and relay latch-up sections; and until then the circuit does not accept any code. The sequential switching section comprises transistors T3 through T5, zener diodes ZD1 through ZD3, tactile switches S1 through S4, and timing capacitors C2 through C4. In this three-stage electronic switch, the three transistors are connected in series to extend positive voltage available at the emitter of transistor T2 to the relay latch-up circuit for energising relay RL1.

When tactile switches S1 through S3 are activated, timing capacitors C2, C3, and C4 are charged through resistors R3, R5, and R7, respectively. Timing capacitor C2 is discharged through resistor R4, zener diode ZD1, and transistor T3; timing capacitor C3 through resistor R6, zener diode ZD2, and transistor T4; and timing capacitor C4 through zener diode ZD3 and transistor T5 only. The individual timing capacitors are chosen in such a way that the time taken to discharge capacitor C2 below 4.7 volts is 6 seconds, 3 seconds for C3, and 1.5 seconds for C4. Thus while activating tactile switches S1 through S3 sequentially, transistor T3 will be in conduction for 6 seconds, transistor T4 for 3 seconds, and transistor T5 for 1.5 seconds.

The positive voltage from the emitter of transistor T2 is extended to tactile switch S4 only for 1.5 seconds. Thus one has to activate S4 tactile switch within 1.5 seconds to energise relay RL1. The minimum time required to keep switch S4 depressed is around 1 second. For sequential switching transistors T3 through T5, the minimum time for which the corresponding switches (S1 through S3) are to be kept depressed is 0.75 seconds to 1.25 seconds. If one operates these switches for less than 0.75 seconds, timing capacitors C2 through C4 may not get charged sufficiently. As a consequence, these capacitors will discharge earlier and any one of transistors T3 through T5 may fail to conduct before activating tactile switch S4.

Thus sequential switching of the three transistors will not be achieved and hence it will not be possible to energise relay RL1 in such a situation. A similar situation arises if one keeps each of the mentioned tactile switches de-pressed for more than 1.5 seconds. When the total time taken to activate switches S1 through S4 is greater than six seconds, transistor T3 stops conducting due to time lapse. Sequential switching is thus not achieved and it is not possible to energise relay RL1. The latch-up relay circuit is built around transistors T6 through T8, zener diode ZD4, and capacitor C5. In idle state, with relay RL1 in de-energised condition, capacitor C5 is in discharged condition and zener diode ZD4 and transistors T7, T8, and T6 in non-conduction state.

However, on correct operation of sequential switches S1 through S4, capacitor C5 is charged through resistor R9 and the voltage across it rises above 4.7 volts. Now zener diode ZD4 as well as transistors T7, T8, and T6 start conducting and relay RL1 is energised. Due to conduction of transistor T6, capacitor C5 remains in charged condition and the relay is in continuously energised condition. Now if you activate reset switch S5 momentarily, capacitor C5 is immediately discharged through resistor R8 and the voltage across it falls below 4.7 volts. Thus zener diode ZD4 and transistors T7, T8, and T6 stop conducting again and relay RL1 de-energises.

 

TDA 2030 8W Audio Amplifier

March 5, 2012

TDA 2030 audio amplifier can output 20 W but in this schematic we have reduced the power to 8w and we use 10w speakers. The input sensivity is around 200mV and the amplifier is set by the 47k and 1.5k resistors.

TDA2030 amplifier circuit diagram

tda2030 8w audio amplifier circuit diagram

 


Continue reading...
 

LM317 audio amplifier

March 5, 2012

You probably know that LM317 IC is used as an adjustable voltage regulator, but did you know it can be used as an audio amplifier? This is a class A audio amplifier built with LM317 that delivers a maximum 1W audio power.

Use a good ...


Continue reading...
 

Cell phone detector circuit diagram

March 5, 2012

This cellular phone detector schematic circuit can sense the presence of an activated mobile cell phone from a distance of one and-a-half meters.
If a RF signal is detected the circuit will inform you using a sound alarm (beep sound )...


Continue reading...
 

Miniature audio amplifier circuit

March 5, 2012

This miniature audio amplifier delivers up to 250mW and can be used like a final stage audio amplifier for radio sets. The schematic is very simple: one BC547 transistor controls a balanced power amplifier built with BC337 and BC327. The total amplification is around 15x and is determined by R1, R3 and P1. The input sensitivity is 95mV and the total current consumption is 180mA.

Small audio amplifier circuit diagram

miniature audio amplifier circuit schematic

 

...
Continue reading...
 

Temperature controlled LEDs

December 4, 2011

Description.
The circuit is nothing but two LEDs (D1 and D2), whose status are controlled by the temperature of the surroundings. The famous IC LM35 is used as the temperature sensor here. Output of LM35 increases by 10mV per degree rise in temperature. Output of LM35 is connected to the non inverting input of the opamp CA3130.The inverting input of the same opamp can be given with the required reference voltage using POT R2. If the reference voltage is 0.8V, then the voltage at the non...


Continue reading...
 

Delayed ON LED

December 4, 2011

Description.

Here is very simple circuit in which the LED becomes ON only after a preset time the power supply is switched ON. When the power supply is switched on the transistor will be OFF. The capacitor now charges via the preset R3 and when the voltage across C1 is sufficient, the transistor switches ON and LED glows. The ON delay depends on the value of POT R3 .You can increase the time delay by increasing the resistance of POT R3.

This circuit alone may not have much practical...


Continue reading...
 

Night security light

December 4, 2011

Description.

 Here is a simple circuit switches on a light around 2 hours after midnight, the time at which most of the robberies taking place.

This simple circuit is build around a CMOS IC 4060 to obtain the required timing. During day time the LDR has low resistance and keeps the pin 12 of the IC1 high, preventing the IC1 from oscillating. When it is dark the LDR resistance becomes high and the pin 12 of IC1 becomes low and the IC starts oscillating, which indicated by the flashing ...


Continue reading...
 

Dancing light.

December 4, 2011

Description.

Here is a simple dancing light circuit based on NE555 (IC1) & CD4017 (IC2) . The IC1 is wired as an astable multivibrator to provide the clock pulses for the CD4017. For each clock pulse receiving at the clock input (pin14) of IC CD4017, the outputs Q0 to Q9 (refer pin diagram of CD 4017) becomes high one by one alternatively. The LEDs connected to these pins glow in the same fashion to give a dancing effect. The speed of the dancing LEDs depend on the frequency of the clo...


Continue reading...
 

Dark Activated Terrace Lamp

November 4, 2011

Compact circuit, Can be wired in parallel to existing switches
This device allows one or more lamps to illuminate at sunset and turn off at dawn.Q1 and Q2 form a trigger device for the SCR, providing short pulses at 100Hz frequency. Pulse duration is set by R2 and C1.When the light hits R1, the photo resistor assumes a very low resistance value, almost shorting C1 and preventing circuit operation. When R1 is in the dark, its resistance value becomes very high thus enabling circuit operati...


Continue reading...
 
 
Make a Free Website with Yola.